Saturday, January 24, 2015

"Get out of here, you mathless untouchable."

Dreaming can be fun as I flattened a circular square mile of Lake Michigan and then generated microwaves which grew as they converged in the center to yield a thick waterspout which narrowed to a 1 inch diameter at its termination one mile high.  So I went to the feds for support to expand to10 square miles and ten miles high.  It all became a nightmare as the feds screamed, “Get out of here you mathless untouchable and don’t come back.”

Friday, January 23, 2015

Obama must get authentic hubcaps for Castro (front page WSJ, January 21, 2015)


NSF reviewers are not totally vacuous.

vacuous

PRONUNCIATION:
(VAK-yoo-uhs) http://wordsmith.org/words/vacuous.mp3


MEANING:
adjective: Lacking ideas or intelligence.


ETYMOLOGY:
From Latin vacuus (empty). Earliest documented use: 1651.


USAGE:
“A beaming, vacuous Hollywood wannabe sashays into the ring.”


Friday, January 16, 2015

And, here is more trash from Director, National Science Foooundation

National Science Foundation

Office of the Director
Arlington, VA 22230
Notice No. 137 January 13, 2015

IMPORTANT NOTICE TO
PRESIDENTS OF UNIVERSITIES AND COLLEGES
AND HEADS OF OTHER NATIONAL SCIENCE FOUNDATION
GRANTEE ORGANIZATIONS

Subject: New steps to enhance transparency and accountability at the National Science Foundation

Over the last year, the National Science Foundation has taken new steps to enhance transparency and accountability. This notice focuses on efforts to clarify NSF’s award abstracts, which serve a different purpose than the project summary that is submitted as part of a proposal.
Effective December 26, 2014, NSF’s updated Proposal and Award Policies and Procedures Guide (PAPPG) (NSF 15-1) includes the following statement about award abstracts: "Should a proposal be recommended for award, the PI (Principal Investigator) may be contacted by the NSF Program Officer for assistance in preparation of the public award abstract and its title. An NSF award abstract, with its title, is an NSF document that describes the project and justifies the expenditure of Federal funds."

While our update to the PAPPG clarifies the possible role of the PI in helping NSF prepare award abstracts, NSF would like to share the Foundation’s guidelines about NSF award abstracts with the science, engineering and education communities to help improve communication about the nature of the award to the public.

The NSF public award abstract consists of both a nontechnical and technical component. The nontechnical component of the NSF award abstract must:
 explain the project’s significance and importance; and
 serve as a public justification for NSF funding by articulating how the project serves the
national interest, as stated by NSF's mission: to promote the progress of science; to
advance the national health, prosperity and welfare; or to secure the national defense.

By sharing these guidelines, NSF is clarifying the nature of requested assistance from PIs in this valuable effort in helping the agency adhere to its newly established guidelines. This collaborative effort also helps foster stronger public communication about the value of federal investments in fundamental research.

France A. Córdova Director












director, To learn more about NSF’s transparency and accountability efforts, visit http://www.nsf.gov/od/transparency/transparency.jsp.

Thursday, January 15, 2015

Myth and Reality

I'll more later on this.

This guy has cleaned up millions.  And you will read:
He and others are very interested in solving the Navier-Stokes equations, which are among the most difficult tackled by mathematicians, and deal with the motion of fluid substances. 



Terence Tao Breakthrough Prize winner seeks further insights into fluid dynamics
More at http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=133826&WT.mc_id=USNSF_1

Discovery
Mathematician tries to solve wave equations

Breakthrough Prize winner seeks further insights into fluid dynamics
Terence Tao
Terence Tao is a professor of mathematics at UCLA.
Credit and Larger Version
January 12, 2015
Wave equations help describe waves of light, sound and water as they occur in physics. Also known as partial differential equations, or PDEs, they have valuable potential for predicting weather or earthquakes, or certain types of natural disasters. For example, during the late stages of a tsunami, they could help forecasters calculate when it will hit land. "PDEs are a big reason why math is useful," says Terence Tao.
Tao, a professor of mathematics at UCLA, is interested in the theoretical side of these equations, seeking to discover with computer algorithms whether they can behave in a way that typically is the opposite of what occurs in the real world. He wants to see whether they can "exhibit blowup," or, essentially, explode.
To explain what he means by this, the National Science Foundation (NSF)-supported scientist suggests picturing what happens to ripples on the surface of a lake or pond. Usually, they gradually disperse and disappear. He, on the other hand, is trying to create the opposite effect, starting with still water that gathers force and ends with a blast.
"Imagine a whole bunch of ripples in concentric circles converging to a single point and exploding," he says "The initial conditions are smooth and placid, but as you run wave equations, they could spontaneously create oscillations, or rogue waves."
This could mean unexpected waves that rise from a calm surface, an occurrence that occasionally appears in nature, although "we don't know if they are spontaneously formed or whether there is an external force creating them, like a tsunami or an unusual weather pattern," Tao says.
His experiments involve trying to solve a series of wave equations, testing whether they are actually possible. He and other mathematicians work with dozens of equations that cover a wide range of possible scenarios from the basic laws of physics--one for every type of fluid and every situation, for example, deep water, shallow water, etc.
"You take an equation and either prove its regularity," meaning they start smooth and end up that way again, "or show that they can do the opposite, start smooth and become faster and faster in amplitude," he says.
"Sometimes when you run these equations they will predict your fluid will reach infinite velocity, but this is impossible, meaning at some point your math equations will break down in the real world," he adds. "Sometimes they give results that are not physical, that is, they don't make any physical sense, meaning they aren't trustworthy."
Tao is an Australian-American mathematician who began learning calculus at age 7, at which age he began high school, earned his doctorate from Princeton University at age 20, when he joined the UCLA faculty, and became a full professor at 24.
He has been the recipient of several NSF grants since 1997 totaling more than $1.3 million, the most recent awarded in 2013. He also was awarded NSF's prestigious $500,000 Alan T. Waterman Award in 2008, which recognizes an outstanding young researcher in any field of science or engineering supported by NSF.
Most recently he won the $3 million Breakthrough Prize in Mathematics, launched by Facebook founder Mark Zuckerberg and Russian entrepreneur Yuri Milner, which recognized him for major advances in the field, and for contributing to communicating the importance and excitement of mathematics to the general public.
Tao has developed insights into a range of different mathematical areas, including harmonic analysis, combinatorics (the branch of mathematics dealing with combinations of objects belonging to a finite set in accordance with certain constraints, such as those of graph theory), and number theory.
He has made significant advances in problems such as Horn's Conjecture, which he and Allen Knutson, professor of mathematics at Cornell University, showed can be reduced to a geometric combinatorial configuration known as a "honeycomb;" honeycombs are connected to several other areas of mathematics, including representation theory, algebraic geometry and abstract algebra.
Also, his analysis of the Schroedinger equation, a PDE that describes how the wave function of a physical system evolves over time, a central element of quantum mechanics, produced new techniques for solving nonlinear partial differential equations.
He and others are very interested in solving the Navier-Stokes equations, which are among the most difficult tackled by mathematicians, and deal with the motion of fluid substances. Understanding them could help with modeling weather, ocean currents, the flow of water through a pipe, air around an airplane wing, and even blood through veins and arteries.
"This is one of the basic equations we use," he says. "We ask, if you start with an initial condition of fluid that is nice and smooth, and let time evolve, can the solution to these equations ever blow up? It shouldn't happen, but we've not been able to settle the question one way or the other. We don't know."
One of the things he is trying to prove is whether, "if you design a special set of initial conditions, you can create a solution to Navier-Stokes where it does become infinite over time," he says. "It would be the reverse of a stone being thrown into a pond, and ripples. I want to do it in a way where it starts smooth, you get ripples and you end with an infinitely fast splash. We don't see that happen in the real world. It is a rare occurrence in the math world, but I think they do exist, theoretically, and that is what I am trying to find."
If mathematicians could establish a blowup for Navier-Stokes, the result would have important implications for the foundations of fluid mechanics, "in that one occasionally needs to replace the Navier-Stokes equations by some more sophisticated refinement when the former equations are predicting a physically impossible blowup," he says.
"But in pure mathematics, we never really know where the applications are going to show up when working on foundational issues," he adds. "For instance, [Bernhard] Riemann worked on an abstract theory of curved space without any notion that Einstein would one day need them for his theory of general relativity; it's what Eugene Wigner famously called 'the unreasonable effectiveness of mathematics in the physical sciences.'"
-- Marlene Cimons, National Science Foundation
InvestigatorsTerence Tao
Edriss Titi 
Related Institutions/OrganizationsUniversity of California-Los Angeles
University of California-Irvine
Related ProgramsAnalysis 
Total Grants$1,447,175