Friday, February 10, 2017

Isotope Separation, Boron



This summary paragraph, Proximity Separation and Deposition in the Microscale, outlines Leyse’s transformative approach to isotope separation.  Leyse’s discoveries are now applied in the new field named Microscale Process Intensification.  With one set of apparatus, and with one platinum microscale heat transfer element, Leyse’s research covered the pressure range from 2 to 45 MPa, the heat flux range from very low to 4000 W/cm2 and the temperature range of the heat transfer element from 25 oC to 870 oC while bulk water temperature was maintained in the range of 20 oC. At the very high heat flux there is intense turbulence in the vicinity of the microscale heat transfer element. The local fluid temperatures range from the saturation temperature to intermediate temperatures.  The complex thermal hydraulics defies analysis with current tools.  A dilute solution of boric acid will decompose within the high temperature field to yield particles of insoluble boric oxide. A fraction of the particles of boron oxide thus produced will deposit on the hot element. If there is difference in the deposition rates, the mix of 10B and 11B on the element will be different than nature’s blend..  

No comments: